How to connect an iPad to a Raspberry Pi – Video Tutorial


There are a lot of good touch-MIDI controllers available for the iPad.  They’re fun to use and can be customized.  One such popular controller is MidiPads .  In the past, an owner of a Raspberry Pi wouldn’t be able to take advantage of this controller, since MidiPads speaks “Network MIDI” and the Raspberry Pi does not.  (Or did not, at least until now).

Read More »How to connect an iPad to a Raspberry Pi – Video Tutorial

Using rtpmidi from the Command Line

Did you know you can use rptmidi directly from the command line in a terminal?  When used this way, the GUI (graphical user interface) is not used, and Bonjour is skipped as well.  Instead, each invocation of the rtpmidi program creates a new Session that can be a Session Listener or Session Initiator.  Working at this level you can connect if you know the hostname or IP-Address of each computer, as well as the port the RTP-MIDI session is listening on.

Command line mode can also come in handy if you are developing a “headless” embedded computer application like the Zynthian Raspberry Pi Synthesizer.
Read on for detailed examples and explanations.
Read More »Using rtpmidi from the Command Line

Using Yoshimi Software Synthesizer on the Raspberry Pi 3B

The RaspberryPi 3B is an amazingly powerful computer for the price. It provides quad-core computing power for just $35. This makes it more than capable for music experimentation and learning, and experimenting with Software Synthesizers is a fun way to learn about sound.

Yoshimi Software Synthesizer running on the Raspberry Pi 3B

This article gives some hints for setting up a Software Synthesizer on your Raspberry Pi. We’ll talk about installing and configuring Yoshimi. Of course, this “software synth” works great with McLaren Labrtpmidi, so you can experiment with a network of Raspberry Pi synthesizers too.
Read More »Using Yoshimi Software Synthesizer on the Raspberry Pi 3B

Towards the Tactile Internet of Musical Things

  • by

You may have heard a new term recently: “The Tactile Internet” [1]. The Tactile Internet is the next evolution in the Internet of Things, where humans and machines can interact in real time, and with a very low latency. Low latency capabilities will enable new applications. The Tactile Internet will allow people to interact with remote environments and in real-time.

The enabling technology is 5G. The 5G standard defines a new class of service called “Ultra-Reliable Low Latency Communication” (URLLC). URLLC not only increases uplink speed, but also eliminates some of the handshakes necessary for an endpoint to send some data up to the network [2]. The end result is that applications can inject data into the network at a much reduced latency.
Read More »Towards the Tactile Internet of Musical Things

Punching it Up: Low-latency notes

Sometimes you want a really “punchy” sound. To a musician, this means a sound with a rapid attack and a quick reaction from the keyboard. To a software developer, this means a sound with a very low attack rate and a very low latency through the synthesizer from the keyboard to the audio output. To make a punchy sound, we’re going to use an external USB audio card, and also adjust the sound card settings.

What is Latency?

Latency is the delay from when you hit a note on the keyboard until you hear the sound. Musicians deal with latency all the time, because there are audio delays inherent in all of our equipment. Pipe Organ players have long been accustomed to experiencing a delay between the keyboard action and the sounding of a pipe. However,  organists learn to adapt.
If the value of the latency between the keypress and the sound is constant, a musician has a good chance of being able to compensate. If the latency is unpredictable, even a tiny bit, then a musician will have a harder time keeping their music sounding rhythmic. We are going to try to adjust our organ to reduce latency, and also the variance of the latency.

Why not the internal sound device?

The internal sound chip of the Raspberry Pi 3 is good enough for desktop sounds and casual listening to music, but if you want clearer sounds, and lower latency you will want an external USB sound card. The actual experience you have will vary with the sound card you choose. Here at McLaren Labs we use a Yamaha MG-10XU mixer with USB input as an external sound device and it works great.
Read about how we reduced latency and created a “punchy” sound below the break.
Read More »Punching it Up: Low-latency notes

Korg Microkey Air 37 Bluetooth MIDI Keyboard with Raspberry Pi

Do you want to have even more fun with your musical Raspberry Pi? Use an external Bluetooth MIDI keyboard with it! For this project, you need to download and compile a new version of the Bluetooth drivers for Linux. If you don’t already have compilation tools installed, you’ll need those too.

We will tell you how to compile and install the necessary Bluetooth driver, and then describe how to pair a Bluetooth MIDI Keyboard.


You should have a Raspberry Pi 3 with built-in Bluetooth adaptor and Raspbian Stretch OS.
Read More »Korg Microkey Air 37 Bluetooth MIDI Keyboard with Raspberry Pi